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Cyclotomic Fields

Splitting Fields of xn − 1

Consider the splitting field of the polynomial xn − 1
over Q. The roots of this polynomial are called the
nth roots of unity.

Every nonzero complex number a + bi ∈ C can be
written uniquely in term of polar coordinate

re iθ = r(cos θ + i sin θ), r > 0, 0 ≤ θ < 2π.

There are n distinct solutions of xn = 1 in C, namely

e
2πki
n = cos(

2πk

n
) + i sin(

2πk

n
), k = 0, 1, . . . , n − 1.

3 / 31



Cyclotomic Fields

Splitting Fields of xn − 1 (Continued)

In fact these are all nth roots of unity, since

(e
2πki
n )n = e

2πki
n n = e2πki = 1.

Hence C contains a splitting field for xn − 1.

The splitting field for xn − 1 over Q is viewed as the
field generated by e

2πki
n in C, where

k = 0, 1, . . . , n − 1.

Remark

In any abstract splitting field K/Q for xn − 1, the
collection of nth roots of unity form a (cyclic) group under
multiplication, since if αn = 1, βn = 1, then (αβ)n = 1.
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Cyclotomic Fields

Definition

A generator of the cyclic group of all nth roots of unity is
called a primitive nth root.

Let ξn denote a primitive nth roots of unity. The other
primitive nth roots of unity are the elements ξan, where
1 ≤ a < n is an integer relative prime to n.

These other primitive nth roots of unity are the other
generators for a cyclic group of order n.

There are precisely ϕ(n) primitive nth roots of unity,
ϕ(n) denotes the Euler ϕ-function.
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Cyclotomic Fields

Example

Over C, let ξn = e2πi/n the first nth roots of unity.
Then all the other roots of unity are

ξkn = e2πki/n

The primitive roots of unity in C for some small values
of n are:

ξ1 = 1; ξ2 = −1;

ξ3 =
−1 + i

√
3

2
; ξ4 = i ;
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Cyclotomic Fields

The splitting field of xn − 1 over Q is the field Q(ξn).

Definition

The field Q(ξn) is called the cyclotomic field of nth roots
of unity.

If n = p, a prime, then
xp − 1 = (x − 1)(xp−1 + xp−2 + · · ·+ x + 1).

Since ξp 6= 1, it is a root of polynomial

φp(x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1,

which is irreducible.
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Cyclotomic Fields

Cyclotomic Extensions

φp(x) the minimal polynomial of ξp over Q and
[Q(ξp) : Q] = p − 1.

In general, [Q(ξn) : Q] = ϕ(n).

Later, we will use the property :

Gal(Q(ξn) : Q) ' (Z/Zn)∗

σa 7→ a mod n,

where σa(ξn) = ξan.
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Cyclotomic Fields

Let µn denote the group of nth roots of unity over Q,
i.e.

µn = {ξ0, ξ1, . . . , ξn−1}.
Then Zn ' µn, by a 7→ (ξn)a for a fixed primitive nth

roots of unity.

If d is a divisor of n and ξ is a d th root of unity, then
ξ is also an nth root of unity since ξn = (ξd)n/d = 1.

Hence µd ⊆ µn, ∀d | n.

Conversely, the order of any element of the group µn
is a divisor of n so that if ξ is an nth root of unity
which is also a d th root of unity for some smaller d ,
then d | n.
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Automorphism Group

Automorphism of K

Let K be a field.

Definition
An isomorphism σ of K is called an automorphism of
K .The collection of automorphisms of K is denoted by
Aut(K ).

An automorphism σ ∈ Aut(K ) is said to fix an
element α ∈ K if σα = α.

If F is a subset of K , then an automorphism σ is said
to fix F if it fixes all the elements of F , i.e. σ|F = idF .

10 / 31



Automorphism Group

Definition

Let K/F be an extension of field. We denote Aut(K/F )
as the collection of automorphisms of K which fix F , i.e.

Aut(K/F ) = {σ : K → K | σ|F = idF}.

Any automorphism σ of a field K fixes its prime
subfield, since σ(1) = 1 and σ(0) = 0.

If F is the prime subfield of K , then
Aut(K ) = Aut(K/F ), since every automorphism of K
automatically fixes F .
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Automorphism Group

Proposition

Aut(K ) is a group under composition and Aut(K/F ) is a
subgroup.

Proposition

Let K/F be a field extension and let α ∈ K be algebraic
over F . Then for any σ ∈ Aut(K/F ), σα is a root of the
minimal polynomial for α over F .

Aut(K/F ) permutes the roots of irreducible
polynomials.

Any polynomial with coefficients in F having α as a
root also has σα as a root.
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Automorphism Group

Example : Finding Aut(Q(
√
2)/Q)

Let K = Q(
√

2). Since Q is the prime subfield of
Q(
√

2),

Aut(Q(
√

2)) = Aut(Q(
√

2)/Q),

If τ ∈ Aut(Q(
√

2)/Q), then

τ(
√

2) =
√

2 or τ(
√

2) = −
√

2,

since there are two roots of the minimal polynomial
x2 − 2 over Q.
Since τ fixes Q,

τ(a + b
√

2) = a + b
√

2, or

τ(a + b
√

2) = a − b
√

2.

13 / 31



Automorphism Group

Finding Aut(Q(
√
2)/Q) (continued)

The map ι :
√

2 7→
√

2 is the identity automorphism.

The map σ :
√

2 7→ −
√

2 is the isomorphism.

Hence

Aut(Q(
√

2)) = Aut(Q(
√

2)/Q) = {ι, σ} ' Z2,

a cyclic group of order 2 generated by σ.
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Automorphism Group

We have associated to each field extension K/F a group
Aut(K/F ), the group of automorphisms of K which fix F .

Proposition

Let H be a subgroup of Aut(K/F ). Then the collection
F of elements of K fixed by all the elements of H is a
subfield of K .
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Automorphism Group

Definition

Let H be a subgroup of automorphisms of K , Aut(K ).
The subfield E of K fixed by all elements of H is called
the fixed field of H .

Suppose K = Q(
√

2) and consider
Aut(Q(

√
2)) = {ι, σ}.

The fixed field of Aut(Q(
√

2)) will be the set of
elements of Q(

√
2) with σ(a + b

√
2) = a + b

√
2.

The equation a + b
√

2 = a − b
√

2 is true for b = 0,
so the fixed field of Aut(Q(

√
2)/Q) is just Q.
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Automorphism Group

Proposition

Let E be the splitting field over F of the polynomial
f (x) ∈ F [x ]. Then |Aut(E/F )| ≤ [E : F ]. If f (x) is
separable over F , then |Aut(E/F )| = [E : F ].

Consider a simple extension E = F (α), and let p(x)
be a polynomial in F [x ] having α as a root.

If α is the only root of p(x) in E , then
|Aut(E/F )| = [E : F ] = 1.

For example, 3
√

2 denote the real cube root of 2, then
|Aut(Q( 3

√
2)/Q)| = 1.
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Automorphism Group

Separable extension

Definition

An algebraic extension E/F is separable if the minimum
polynomial of every element of E is separable; otherwise it
is inseparable.

An algebraic extension E/F is separable if every
irreducible polynomial in F [x ] having a root in E is
separable.

Let p(X ) be an irreducible polynomial of degree m in
F [x ]. If E/F is separable, then roots of p(x) are
distinct.
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Automorphism Group

Example : The polynomial x3 − 2 has one real root
3
√

2 and two nonreal roots in C. Therefore the
extension Q( 3

√
2)/Q is separable.
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Finite Galois Theory

Definition

Let K/F be a finite extension.

K is said to be Galois over F and K/F is a Galois
extension if K is normal, separable and finite over F .

If K/F is Galois the group Aut(K/F ) is called the
Galois group of K/F , denoted by Gal(K/F ).

Corollary

If K is the splitting field over F of a separable polynomial
f (x), then K/F is Galois.
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Finite Galois Theory

Necessary and sufficient conditions for Galois extension

Theorem

For an extension K/F , the following statements are
equivalent:

1. K is Galois over F ;

2. K is the splitting field of a separable polynomial
p(x) ∈ F [x ];

3. The elements of F are fixed by all σ ∈ Aut(K );

4. |Aut(K/F )| = [K : F ].
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Finite Galois Theory

Definition

If f (x) is a separable polynomial over F , then the Galois
group of f (x) over F is the Galois group of the splitting
field of f (x) over F .

The extension Q(
√

2)/Q is Galois with Galois group
Gal(Q(

√
2)/Q) = {ι, σ} ' Z2.

The extension Q( 3
√

2)/Q is not Galois since its group
automorphisms is only of order 1.
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Finite Galois Theory

Example : Finding Gal(Q(
√
2,
√
3))

The extension Q(
√

2,
√

3) is Galois over Q since it is
the splitting field of the polynomial (x2 − 2)(x2 − 3).

The only possibility for automorphisms are maps:

ι :
√

2 7→
√

2 and
√

3 7→
√

3;

σ :
√

2 7→ −
√

2 and
√

3 7→
√

3;

τ :
√

2 7→
√

2 and
√

3 7→ −
√

3;

θ :
√

2 7→ −
√

2 and
√

3 7→ −
√

3.
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Finite Galois Theory

Example : Finding Gal(Q(
√
2,
√
3)) (continued)

Since the Galois group is of order 4, all these elements
are in fact automorphisms of Q(

√
2,
√

3) over Q.

Consider the automorphisms :

σ :
√

2 7→ −
√

2 and
√

3 7→
√

3

τ :
√

2 7→
√

2 and
√

3 7→ −
√

3.

Then consider that

σ(
√
6) = σ(

√
2
√
3) = σ(

√
2)σ(
√
3) = −

√
2
√
3 = −

√
6.
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Finite Galois Theory

Example : Finding Gal(Q(
√
2,
√
3)) (continued)

Hence, we have explicitely

σ : a + b
√

2 + c
√

3 + d
√

6 7→ a − b
√

2 + c
√

3− d
√

6;

τ : a + b
√

2 + c
√

3 + d
√

6 7→ a + b
√

2− c
√

3− d
√

6.

Then σ2(
√

2) =
√

2 and σ2(
√

3) =
√

3, or σ2 = id .

Similarly, τ 2 = id .
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Finite Galois Theory

Example : Finding Gal(Q(
√
2,
√
3)) (continued)

The automorphism στ can be computed as:

στ(
√

2) = σ(τ(
√

2)) = σ(
√

2) = −
√

2;

στ(
√

3) = σ(τ(
√

3)) = σ(−
√

3) = −
√

3.

Hence Gal(Q(
√

2,
√

3)/Q) = {1, σ, τ, στ}.
It is isomorphic to the Klein 4-group.
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Finite Galois Theory

Example Subgroup of Gal(Q(
√
2,
√
3)/Q)

Each subgroup H in Gal(Q(
√

2,
√

3)/Q) corresponds
to a subfield K of E .

subgroup fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, τ} Q(
√

2))

{1, σ, τ} Q(
√

6)
{1, σ, τ, στ} Q
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Finite Galois Theory

Fundamental Theorem of Galois Theory

Let K/F be a Galois extension and G = Gal(K/F ).
There is a bijection :

{E | F ⊂ E ⊂ K} ↔ {H | H ⊂ G}
E 7→ {σ ∈ G | σ|E = idE}

{x ∈ K | σ(x) = x , ← H .

∀σ ∈ H}
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Finite Galois Theory

Properties

If E1 and E2 corresponding to H1 and H2 respectively,
then E1 ⊆ E2 if and only if H1 ≥ H2.

F ⊂ E ⊂ K , E corresponding to H . Then
[K : E ] = |H | and [E : F ] = |G : H |.
K/E is always Galois with Galois group
Gal(K/E ) = H
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Finite Galois Theory

Properties (continued)

E is Galois over F if and only if H is a normal
subgroup in G . If this is the case, then the Galois
group is isomorphic to the quotien group
Gal(E/F ) ' G/H .

If E1 and E2 corresponding to H1 and H2 respectively,
then:

a E1 ∩ E2 corresponding to < H1,H2 >;

b E1E2 corresponding to H1 ∩ H2.

30 / 31



Finite Galois Theory

Example

Consider the field Q(
√

2 +
√

3) is a subfield of the
Galois extension Q(

√
2,
√

3).

The other roots of the minimal polynomial for√
2 +
√

3 over Q are the distinct conjugate of√
2 +
√

3, i.e. ±
√

2±
√

3.
The minimal polynomial is therefore:

(x−(
√

2+
√

3))(x−(
√

2−
√

3))(x−(−
√

2+
√

3))(x−(−
√

2−
√

3)),

that is the irreducible polynomial x4 − 10x2 + 1.

Moreover, Q(
√

2,
√

3) = Q(
√

2 +
√

3)
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