Galois Field Lecture 3

Indah Emilia Wijayanti

Department of Mathematics Universitas Gadjah Mada, Yogyakarta, Indonesia

CIMPA Research School on Group Actions in Arithmetic and Geometry Universitas Gadjah Mada, Yogyakarta 17-28 February 2020

O Cyclotomic Fields

Automorphism Group

3 Finite Galois Theory

Splitting Fields of $x^n - 1$

- Consider the splitting field of the polynomial xⁿ − 1 over Q. The roots of this polynomial are called the nth roots of unity.
- Every nonzero complex number a + bi ∈ C can be written uniquely in term of polar coordinate

$$re^{i\theta} = r(\cos\theta + i\sin\theta), \quad r > 0, 0 \le \theta < 2\pi.$$

• There are *n* distinct solutions of $x^n = 1$ in \mathbb{C} , namely

$$e^{\frac{2\pi ki}{n}} = \cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n}), \quad k = 0, 1, \dots, n-1.$$

Splitting Fields of $x^n - 1$ (Continued)

• In fact these are all n^{th} roots of unity, since

$$(e^{\frac{2\pi ki}{n}})^n = e^{\frac{2\pi ki}{n}n} = e^{2\pi ki} = 1.$$

- Hence \mathbb{C} contains a splitting field for $x^n 1$.
- The splitting field for xⁿ − 1 over Q is viewed as the field generated by e^{2πki}/_n in C, where k = 0, 1, ..., n − 1.

Remark

In any abstract splitting field K/\mathbb{Q} for $x^n - 1$, the collection of n^{th} roots of unity form a (cyclic) group under multiplication, since if $\alpha^n = 1$, $\beta^n = 1$, then $(\alpha\beta)^n = 1$.

Definition

A generator of the cyclic group of all n^{th} roots of unity is called a primitive n^{th} root.

- Let ξ_n denote a primitive nth roots of unity. The other primitive nth roots of unity are the elements ξ_n^a, where 1 ≤ a < n is an integer relative prime to n.
- These other primitive *n*th roots of unity are the other generators for a cyclic group of order *n*.
- There are precisely $\varphi(n)$ primitive n^{th} roots of unity, $\varphi(n)$ denotes the Euler φ -function.

Example

• Over \mathbb{C} , let $\xi_n = e^{2\pi i/n}$ the first n^{th} roots of unity. Then all the other roots of unity are

4

$$\xi_n^k = e^{2\pi k i/n}$$

• The primitive roots of unity in \mathbb{C} for some small values of *n* are:

$$\xi_1 = 1; \quad \xi_2 = -1;$$

 $\xi_3 = \frac{-1 + i\sqrt{3}}{2}; \quad \xi_4 = i;$

The splitting field of $x^n - 1$ over \mathbb{Q} is the field $\mathbb{Q}(\xi_n)$.

Definition

The field $\mathbb{Q}(\xi_n)$ is called the cyclotomic field of n^{th} roots of unity.

• If
$$n = p$$
, a prime, then
 $x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + x + 1).$
• Since $\xi_{p} \neq 1$, it is a root of polynomial
 $\phi_{p}(x) = \frac{x^{p} - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1,$

which is irreducible.

Cyclotomic Extensions

- $\phi_p(x)$ the minimal polynomial of ξ_p over \mathbb{Q} and $[\mathbb{Q}(\xi_p) : \mathbb{Q}] = p 1.$
- In general, $[\mathbb{Q}(\xi_n) : \mathbb{Q}] = \varphi(n)$.
- Later, we will use the property :

$$\operatorname{Gal}(\mathbb{Q}(\xi_n):\mathbb{Q}) \simeq (\mathbb{Z}/\mathbb{Z}_n)^*$$

 $\sigma_a \mapsto a \mod n,$

where $\sigma_a(\xi_n) = \xi_n^a$.

• Let μ_n denote the group of n^{th} roots of unity over \mathbb{Q} , i.e.

$$\mu_n = \{\xi_0, \xi_1, \ldots, \xi_{n-1}\}.$$

- Then $\mathbb{Z}_n \simeq \mu_n$, by $a \mapsto (\xi_n)^a$ for a fixed primitive n^{th} roots of unity.
- If d is a divisor of n and ξ is a d^{th} root of unity, then ξ is also an n^{th} root of unity since $\xi^n = (\xi^d)^{n/d} = 1$.

• Hence
$$\mu_d \subseteq \mu_n, \quad \forall d \mid n.$$

Conversely, the order of any element of the group μ_n is a divisor of n so that if ξ is an nth root of unity which is also a dth root of unity for some smaller d, then d | n.

Automorphism of K

Let K be a field.

Definition

- An isomorphism σ of K is called an automorphism of K.The collection of automorphisms of K is denoted by Aut(K).
- An automorphism σ ∈ Aut(K) is said to fix an element α ∈ K if σα = α.
- If F is a subset of K, then an automorphism σ is said to fix F if it fixes all the elements of F, i.e. $\sigma|_F = id_F$.

Definition

Let K/F be an extension of field. We denote Aut(K/F) as the collection of automorphisms of K which fix F, i.e.

$$\operatorname{Aut}(K/F) = \{ \sigma : K \to K \mid \sigma|_F = id_F \}.$$

- Any automorphism σ of a field K fixes its prime subfield, since σ(1) = 1 and σ(0) = 0.
- If F is the prime subfield of K, then Aut(K) = Aut(K/F), since every automorphism of K automatically fixes F.

Proposition

Aut(K) is a group under composition and Aut(K/F) is a subgroup.

Proposition

Let K/F be a field extension and let $\alpha \in K$ be algebraic over F. Then for any $\sigma \in Aut(K/F)$, $\sigma \alpha$ is a root of the minimal polynomial for α over F.

- Aut(K/F) permutes the roots of irreducible polynomials.
- Any polynomial with coefficients in F having α as a root also has $\sigma \alpha$ as a root.

Example : Finding $Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$

• Let $K = \mathbb{Q}(\sqrt{2})$. Since \mathbb{Q} is the prime subfield of $\mathbb{Q}(\sqrt{2})$,

$$\operatorname{Aut}(\mathbb{Q}(\sqrt{2})) = \operatorname{Aut}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}),$$

• If
$$\tau \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$$
, then
 $\tau(\sqrt{2}) = \sqrt{2} \quad \text{or} \quad \tau(\sqrt{2}) = -\sqrt{2},$

since there are two roots of the minimal polynomial $x^2 - 2$ over \mathbb{Q} .

• Since au fixes \mathbb{Q} ,

$$\tau(\mathbf{a} + \mathbf{b}\sqrt{2}) = \mathbf{a} + \mathbf{b}\sqrt{2}, \text{ or}$$

$$\tau(\mathbf{a} + \mathbf{b}\sqrt{2}) = \mathbf{a} - \mathbf{b}\sqrt{2}.$$

Finding $Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ (continued)

- The map $\iota:\sqrt{2}\mapsto\sqrt{2}$ is the identity automorphism.
- The map $\sigma: \sqrt{2} \mapsto -\sqrt{2}$ is the isomorphism.

Hence

$$\operatorname{Aut}(\mathbb{Q}(\sqrt{2})) = \operatorname{Aut}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{\iota, \sigma\} \simeq \mathbb{Z}_2,$$

a cyclic group of order 2 generated by $\sigma.$

We have associated to each field extension K/F a group Aut(K/F), the group of automorphisms of K which fix F.

Proposition

Let *H* be a subgroup of Aut(K/F). Then the collection *F* of elements of *K* fixed by all the elements of *H* is a subfield of *K*.

Definition

Let *H* be a subgroup of automorphisms of *K*, Aut(K). The subfield *E* of *K* fixed by all elements of *H* is called the fixed field of *H*.

• Suppose
$$K = \mathbb{Q}(\sqrt{2})$$
 and consider $\operatorname{Aut}(\mathbb{Q}(\sqrt{2})) = \{\iota, \sigma\}.$

- The fixed field of $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}))$ will be the set of elements of $\mathbb{Q}(\sqrt{2})$ with $\sigma(a + b\sqrt{2}) = a + b\sqrt{2}$.
- The equation $a + b\sqrt{2} = a b\sqrt{2}$ is true for b = 0, so the fixed field of $\operatorname{Aut}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ is just \mathbb{Q} .

Proposition

Let *E* be the splitting field over *F* of the polynomial $f(x) \in F[x]$. Then $|\operatorname{Aut}(E/F)| \leq [E : F]$. If f(x) is separable over *F*, then $|\operatorname{Aut}(E/F)| = [E : F]$.

- Consider a simple extension E = F(α), and let p(x) be a polynomial in F[x] having α as a root.
- If α is the only root of p(x) in E, then $|\operatorname{Aut}(E/F)| = [E : F] = 1.$
- For example, $\sqrt[3]{2}$ denote the real cube root of 2, then $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| = 1.$

Separable extension

Definition

An algebraic extension E/F is separable if the minimum polynomial of every element of E is separable; otherwise it is inseparable.

- An algebraic extension E/F is separable if every irreducible polynomial in F[x] having a root in E is separable.
- Let p(X) be an irreducible polynomial of degree m in F[x]. If E/F is separable, then roots of p(x) are distinct.

 Example : The polynomial x³ − 2 has one real root ³√2 and two nonreal roots in C. Therefore the extension Q(³√2)/Q is separable.

Definition

Let K/F be a finite extension.

- *K* is said to be Galois over *F* and *K*/*F* is a Galois extension if *K* is normal, separable and finite over *F*.
- If K/F is Galois the group Aut(K/F) is called the Galois group of K/F, denoted by Gal(K/F).

Corollary

If K is the splitting field over F of a separable polynomial f(x), then K/F is Galois.

Necessary and sufficient conditions for Galois extension

Theorem

For an extension K/F, the following statements are equivalent:

- 1. K is Galois over F;
- 2. *K* is the splitting field of a separable polynomial $p(x) \in F[x]$;
- 3. The elements of F are fixed by all $\sigma \in Aut(K)$;
- 4. $|\operatorname{Aut}(K/F)| = [K : F].$

Definition

If f(x) is a separable polynomial over F, then the Galois group of f(x) over F is the Galois group of the splitting field of f(x) over F.

- The extension $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is Galois with Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{\iota, \sigma\} \simeq \mathbb{Z}_2.$
- The extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois since its group automorphisms is only of order 1.

Example : Finding $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))$

- The extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is Galois over \mathbb{Q} since it is the splitting field of the polynomial $(x^2 2)(x^2 3)$.
- The only possibility for automorphisms are maps:

$$\iota : \sqrt{2} \mapsto \sqrt{2} \text{ and } \sqrt{3} \mapsto \sqrt{3};$$

$$\sigma : \sqrt{2} \mapsto -\sqrt{2} \text{ and } \sqrt{3} \mapsto \sqrt{3};$$

$$\tau : \sqrt{2} \mapsto \sqrt{2} \text{ and } \sqrt{3} \mapsto -\sqrt{3};$$

$$\theta : \sqrt{2} \mapsto -\sqrt{2} \text{ and } \sqrt{3} \mapsto -\sqrt{3}.$$

Example : Finding $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))$ (continued)

- Since the Galois group is of order 4, all these elements are in fact automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- Consider the automorphisms :

$$\sigma : \sqrt{2} \mapsto -\sqrt{2} \text{ and } \sqrt{3} \mapsto \sqrt{3}$$

$$\tau : \sqrt{2} \mapsto \sqrt{2} \text{ and } \sqrt{3} \mapsto -\sqrt{3}.$$

• Then consider that

$$\sigma(\sqrt{6}) = \sigma(\sqrt{2}\sqrt{3}) = \sigma(\sqrt{2})\sigma(\sqrt{3}) = -\sqrt{2}\sqrt{3} = -\sqrt{6}.$$

Example : Finding $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))$ (continued)

• Hence, we have explicitely

$$\sigma : a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mapsto a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6};$$

$$\tau : a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mapsto a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}.$$

• Then $\sigma^2(\sqrt{2}) = \sqrt{2}$ and $\sigma^2(\sqrt{3}) = \sqrt{3}$, or $\sigma^2 = id$. • Similarly, $\tau^2 = id$.

Example : Finding $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3}))$ (continued)

• The automorphism $\sigma \tau$ can be computed as:

$$\sigma\tau(\sqrt{2}) = \sigma(\tau(\sqrt{2})) = \sigma(\sqrt{2}) = -\sqrt{2};$$

$$\sigma\tau(\sqrt{3}) = \sigma(\tau(\sqrt{3})) = \sigma(-\sqrt{3}) = -\sqrt{3}.$$

- Hence $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}) = \{1,\sigma,\tau,\sigma\tau\}.$
- It is isomorphic to the Klein 4-group.

Example Subgroup of $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$

 Each subgroup H in Gal(Q(√2, √3)/Q) corresponds to a subfield K of E.

Fundamental Theorem of Galois Theory

Let K/F be a Galois extension and G = Gal(K/F). There is a bijection :

$$\{E \mid F \subset E \subset K\} \iff \{H \mid H \subset G\}$$

$$E \mapsto \{\sigma \in G \mid \sigma|_E = id_E\}$$

$$\{x \in K \mid \sigma(x) = x, \leftarrow H.$$

$$\forall \sigma \in H\}$$

Properties

- If E₁ and E₂ corresponding to H₁ and H₂ respectively, then E₁ ⊆ E₂ if and only if H₁ ≥ H₂.
- $F \subset E \subset K$, E corresponding to H. Then [K : E] = |H| and [E : F] = |G : H|.
- K/E is always Galois with Galois group Gal(K/E) = H

Properties (continued)

- E is Galois over F if and only if H is a normal subgroup in G. If this is the case, then the Galois group is isomorphic to the quotien group Gal(E/F) ≃ G/H.
- If *E*₁ and *E*₂ corresponding to *H*₁ and *H*₂ respectively, then:
 - a $E_1 \cap E_2$ corresponding to $< H_1, H_2 >$;
 - b E_1E_2 corresponding to $H_1 \cap H_2$.

Example

- Consider the field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ is a subfield of the Galois extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- The other roots of the minimal polynomial for $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} are the distinct conjugate of $\sqrt{2} + \sqrt{3}$, i.e. $\pm \sqrt{2} \pm \sqrt{3}$.
- The minimal polynomial is therefore:

$$(x-(\sqrt{2}+\sqrt{3}))(x-(\sqrt{2}-\sqrt{3}))(x-(-\sqrt{2}+\sqrt{3}))(x-(-\sqrt{2}-\sqrt{3})),$$

that is the irreducible polynomial $x^4 - 10x^2 + 1$. • Moreover, $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$