Galois Field Lecture 3

Indah Emilia Wijayanti

Department of Mathematics Universitas Gadjah Mada, Yogyakarta, Indonesia

CIMPA Research School on

Group Actions in Arithmetic and Geometry
Universitas Gadjah Mada, Yogyakarta 17-28 February 2020

Outline

(1) Cyclotomic Fields

(2) Automorphism Group
(3) Finite Galois Theory

Splitting Fields of $x^{n}-1$

- Consider the splitting field of the polynomial $x^{n}-1$ over \mathbb{Q}. The roots of this polynomial are called the $n^{\text {th }}$ roots of unity.
- Every nonzero complex number $a+b i \in \mathbb{C}$ can be written uniquely in term of polar coordinate

$$
r e^{i \theta}=r(\cos \theta+i \sin \theta), \quad r>0,0 \leq \theta<2 \pi
$$

- There are n distinct solutions of $x^{n}=1$ in \mathbb{C}, namely

$$
e^{\frac{2 \pi k i}{n}}=\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right), \quad k=0,1, \ldots, n-1 .
$$

Splitting Fields of $x^{n}-1$ (Continued)

- In fact these are all $n^{\text {th }}$ roots of unity, since

$$
\left(e^{\frac{2 \pi k i}{n}}\right)^{n}=e^{\frac{2 \pi k i}{n} n}=e^{2 \pi k i}=1
$$

- Hence \mathbb{C} contains a splitting field for $x^{n}-1$.
- The splitting field for $x^{n}-1$ over \mathbb{Q} is viewed as the field generated by $e^{\frac{2 \pi k i}{n}}$ in \mathbb{C}, where

$$
k=0,1, \ldots, n-1
$$

Remark

In any abstract splitting field K / \mathbb{Q} for $x^{n}-1$, the collection of $n^{\text {th }}$ roots of unity form a (cyclic) group under multiplication, since if $\alpha^{n}=1, \beta^{n}=1$, then $(\alpha \beta)^{n}=1$.

Definition

A generator of the cyclic group of all $n^{\text {th }}$ roots of unity is called a primitive $n^{\text {th }}$ root.

- Let ξ_{n} denote a primitive $n^{\text {th }}$ roots of unity. The other primitive $n^{\text {th }}$ roots of unity are the elements ξ_{n}^{a}, where $1 \leq a<n$ is an integer relative prime to n.
- These other primitive $n^{\text {th }}$ roots of unity are the other generators for a cyclic group of order n.
- There are precisely $\varphi(n)$ primitive $n^{\text {th }}$ roots of unity, $\varphi(n)$ denotes the Euler φ-function.

Example

- Over \mathbb{C}, let $\xi_{n}=e^{2 \pi i / n}$ the first $n^{t h}$ roots of unity. Then all the other roots of unity are

$$
\xi_{n}^{k}=e^{2 \pi k i / n}
$$

- The primitive roots of unity in \mathbb{C} for some small values of n are:

$$
\begin{aligned}
& \xi_{1}=1 ; \quad \xi_{2}=-1 \\
& \xi_{3}=\frac{-1+i \sqrt{3}}{2} ; \quad \xi_{4}=i
\end{aligned}
$$

The splitting field of $x^{n}-1$ over \mathbb{Q} is the field $\mathbb{Q}\left(\xi_{n}\right)$.

Definition

The field $\mathbb{Q}\left(\xi_{n}\right)$ is called the cyclotomic field of $n^{\text {th }}$ roots of unity.

- If $n=p$, a prime, then

$$
x^{p}-1=(x-1)\left(x^{p-1}+x^{p-2}+\cdots+x+1\right) .
$$

- Since $\xi_{p} \neq 1$, it is a root of polynomial

$$
\phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1,
$$

which is irreducible.

Cyclotomic Extensions

- $\phi_{p}(x)$ the minimal polynomial of ξ_{p} over \mathbb{Q} and $\left[\mathbb{Q}\left(\xi_{p}\right): \mathbb{Q}\right]=p-1$.
- In general, $\left[\mathbb{Q}\left(\xi_{n}\right): \mathbb{Q}\right]=\varphi(n)$.
- Later, we will use the property :

$$
\begin{aligned}
\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{n}\right): \mathbb{Q}\right) & \simeq\left(\mathbb{Z} / \mathbb{Z}_{n}\right)^{*} \\
\sigma_{a} & \mapsto a \bmod n,
\end{aligned}
$$

where $\sigma_{a}\left(\xi_{n}\right)=\xi_{n}^{a}$.

- Let μ_{n} denote the group of $n^{\text {th }}$ roots of unity over \mathbb{Q}, i.e.

$$
\mu_{n}=\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}\right\}
$$

- Then $\mathbb{Z}_{n} \simeq \mu_{n}$, by $a \mapsto\left(\xi_{n}\right)^{\text {a }}$ for a fixed primitive $n^{t h}$ roots of unity.
- If d is a divisor of n and ξ is a $d^{\text {th }}$ root of unity, then ξ is also an $n^{t h}$ root of unity since $\xi^{n}=\left(\xi^{d}\right)^{n / d}=1$.
- Hence $\mu_{d} \subseteq \mu_{n}, \quad \forall d \mid n$.
- Conversely, the order of any element of the group μ_{n} is a divisor of n so that if ξ is an $n^{\text {th }}$ root of unity which is also a $d^{t h}$ root of unity for some smaller d, then $d \mid n$.

Automorphism of K

Let K be a field.
Definition

- An isomorphism σ of K is called an automorphism of K. The collection of automorphisms of K is denoted by Aut (K).
- An automorphism $\sigma \in \operatorname{Aut}(K)$ is said to fix an element $\alpha \in K$ if $\sigma \alpha=\alpha$.
- If F is a subset of K, then an automorphism σ is said to fix F if it fixes all the elements of F, i.e. $\left.\sigma\right|_{F}=i d_{F}$.

Definition

Let K / F be an extension of field. We denote $\operatorname{Aut}(K / F)$ as the collection of automorphisms of K which fix F, i.e.

$$
\operatorname{Aut}(K / F)=\left\{\sigma: K \rightarrow K|\sigma|_{F}=i d_{F}\right\} .
$$

- Any automorphism σ of a field K fixes its prime subfield, since $\sigma(1)=1$ and $\sigma(0)=0$.
- If F is the prime subfield of K, then
$\operatorname{Aut}(K)=\operatorname{Aut}(K / F)$, since every automorphism of K automatically fixes F.

Proposition

$\operatorname{Aut}(K)$ is a group under composition and $\operatorname{Aut}(K / F)$ is a subgroup.

Proposition

Let K / F be a field extension and let $\alpha \in K$ be algebraic over F. Then for any $\sigma \in \operatorname{Aut}(K / F), \sigma \alpha$ is a root of the minimal polynomial for α over F.

- Aut (K / F) permutes the roots of irreducible polynomials.
- Any polynomial with coefficients in F having α as a root also has $\sigma \alpha$ as a root.

Example : Finding $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$

- Let $K=\mathbb{Q}(\sqrt{2})$. Since \mathbb{Q} is the prime subfield of $\mathbb{Q}(\sqrt{2})$,

$$
\operatorname{Aut}(\mathbb{Q}(\sqrt{2}))=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})
$$

- If $\tau \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$, then

$$
\tau(\sqrt{2})=\sqrt{2} \quad \text { or } \quad \tau(\sqrt{2})=-\sqrt{2}
$$

since there are two roots of the minimal polynomial $x^{2}-2$ over \mathbb{Q}.

- Since τ fixes \mathbb{Q},

$$
\begin{aligned}
\tau(a+b \sqrt{2}) & =a+b \sqrt{2}, \text { or } \\
\tau(a+b \sqrt{2}) & =a-b \sqrt{2}
\end{aligned}
$$

Finding $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ (continued)

- The map $\iota: \sqrt{2} \mapsto \sqrt{2}$ is the identity automorphism.
- The map $\sigma: \sqrt{2} \mapsto-\sqrt{2}$ is the isomorphism.
- Hence

$$
\operatorname{Aut}(\mathbb{Q}(\sqrt{2}))=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\{\iota, \sigma\} \simeq \mathbb{Z}_{2}
$$

a cyclic group of order 2 generated by σ.

We have associated to each field extension K / F a group Aut (K / F), the group of automorphisms of K which fix F.

Proposition

Let H be a subgroup of $\operatorname{Aut}(K / F)$. Then the collection F of elements of K fixed by all the elements of H is a subfield of K.

Definition

Let H be a subgroup of automorphisms of K, $\operatorname{Aut}(K)$. The subfield E of K fixed by all elements of H is called the fixed field of H.

- Suppose $K=\mathbb{Q}(\sqrt{2})$ and consider $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}))=\{\iota, \sigma\}$.
- The fixed field of $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}))$ will be the set of elements of $\mathbb{Q}(\sqrt{2})$ with $\sigma(a+b \sqrt{2})=a+b \sqrt{2}$.
- The equation $a+b \sqrt{2}=a-b \sqrt{2}$ is true for $b=0$, so the fixed field of $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ is just \mathbb{Q}.

Proposition

Let E be the splitting field over F of the polynomial $f(x) \in F[x]$. Then $|\operatorname{Aut}(E / F)| \leq[E: F]$. If $f(x)$ is separable over F, then $|\operatorname{Aut}(E / F)|=[E: F]$.

- Consider a simple extension $E=F(\alpha)$, and let $p(x)$ be a polynomial in $F[x]$ having α as a root.
- If α is the only root of $p(x)$ in E, then $|\operatorname{Aut}(E / F)|=[E: F]=1$.
- For example, $\sqrt[3]{2}$ denote the real cube root of 2 , then $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})|=1$.

Separable extension

Definition

An algebraic extension E / F is separable if the minimum polynomial of every element of E is separable; otherwise it is inseparable.

- An algebraic extension E / F is separable if every irreducible polynomial in $F[x]$ having a root in E is separable.
- Let $p(X)$ be an irreducible polynomial of degree m in $F[x]$. If E / F is separable, then roots of $p(x)$ are distinct.
- Example: The polynomial $x^{3}-2$ has one real root $\sqrt[3]{2}$ and two nonreal roots in \mathbb{C}. Therefore the extension $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is separable.

Definition

Let K / F be a finite extension.

- K is said to be Galois over F and K / F is a Galois extension if K is normal, separable and finite over F.
- If K / F is Galois the group $\operatorname{Aut}(K / F)$ is called the Galois group of K / F, denoted by $\operatorname{Gal}(K / F)$.

Corollary

If K is the splitting field over F of a separable polynomial $f(x)$, then K / F is Galois.

Necessary and sufficient conditions for Galois extension

Theorem

For an extension K / F, the following statements are equivalent:

1. K is Galois over F;
2. K is the splitting field of a separable polynomial

$$
p(x) \in F[x]
$$

3. The elements of F are fixed by all $\sigma \in \operatorname{Aut}(K)$; 4. $|\operatorname{Aut}(K / F)|=[K: F]$.

Definition

If $f(x)$ is a separable polynomial over F, then the Galois group of $f(x)$ over F is the Galois group of the splitting field of $f(x)$ over F.

- The extension $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is Galois with Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\{\iota, \sigma\} \simeq \mathbb{Z}_{2}$.
- The extension $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not Galois since its group automorphisms is only of order 1 .

Example : Finding $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$

- The extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is Galois over \mathbb{Q} since it is the splitting field of the polynomial $\left(x^{2}-2\right)\left(x^{2}-3\right)$.
- The only possibility for automorphisms are maps:

$$
\begin{aligned}
\iota & : \sqrt{2} \mapsto \sqrt{2} \text { and } \sqrt{3} \mapsto \sqrt{3} ; \\
\sigma & : \sqrt{2} \mapsto-\sqrt{2} \text { and } \sqrt{3} \mapsto \sqrt{3} ; \\
\tau & : \sqrt{2} \mapsto \sqrt{2} \text { and } \sqrt{3} \mapsto-\sqrt{3} ; \\
\theta & : \sqrt{2} \mapsto-\sqrt{2} \text { and } \sqrt{3} \mapsto-\sqrt{3} .
\end{aligned}
$$

Example : Finding $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ (continued)

- Since the Galois group is of order 4 , all these elements are in fact automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}.
- Consider the automorphisms :

$$
\begin{aligned}
\sigma & : \sqrt{2} \mapsto-\sqrt{2} \text { and } \sqrt{3} \mapsto \sqrt{3} \\
\tau & : \sqrt{2} \mapsto \sqrt{2} \text { and } \sqrt{3} \mapsto-\sqrt{3} .
\end{aligned}
$$

- Then consider that

$$
\sigma(\sqrt{6})=\sigma(\sqrt{2} \sqrt{3})=\sigma(\sqrt{2}) \sigma(\sqrt{3})=-\sqrt{2} \sqrt{3}=-\sqrt{6} .
$$

Example : Finding $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ (continued)

- Hence, we have explicitely

$$
\begin{array}{l:l}
\sigma & : \quad a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mapsto a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} ; \\
\tau & : \quad a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mapsto a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} .
\end{array}
$$

- Then $\sigma^{2}(\sqrt{2})=\sqrt{2}$ and $\sigma^{2}(\sqrt{3})=\sqrt{3}$, or $\sigma^{2}=i d$.
- Similarly, $\tau^{2}=i d$.

Example : Finding $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ (continued)

- The automorphism $\sigma \tau$ can be computed as:

$$
\begin{aligned}
& \sigma \tau(\sqrt{2})=\sigma(\tau(\sqrt{2}))=\sigma(\sqrt{2})=-\sqrt{2} \\
& \sigma \tau(\sqrt{3})=\sigma(\tau(\sqrt{3}))=\sigma(-\sqrt{3})=-\sqrt{3}
\end{aligned}
$$

- Hence $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=\{1, \sigma, \tau, \sigma \tau\}$.
- It is isomorphic to the Klein 4-group.

Example Subgroup of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$

- Each subgroup H in $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$ corresponds to a subfield K of E.

subgroup	fixed field
$\{1\}$	$\mathbb{Q}(\sqrt{2}, \sqrt{3})$
$\{1, \sigma\}$	$\mathbb{Q}(\sqrt{3})$
$\{1, \tau\}$	$\mathbb{Q}(\sqrt{2}))$
$\{1, \sigma, \tau\}$	$\mathbb{Q}(\sqrt{6})$
$\{1, \sigma, \tau, \sigma \tau\}$	\mathbb{Q}

Fundamental Theorem of Galois Theory

Let K / F be a Galois extension and $G=\operatorname{Gal}(K / F)$.
There is a bijection :

$$
\begin{aligned}
\{E \mid F \subset E \subset K\} & \leftrightarrow\{H \mid H \subset G\} \\
E & \mapsto\left\{\sigma \in G|\sigma|_{E}=i d_{E}\right\} \\
\{x \in K \mid \sigma(x)=x, & \leftarrow H . \\
\forall \sigma \in H\} &
\end{aligned}
$$

Properties

- If E_{1} and E_{2} corresponding to H_{1} and H_{2} respectively, then $E_{1} \subseteq E_{2}$ if and only if $H_{1} \geq H_{2}$.
- $F \subset E \subset K, E$ corresponding to H. Then $[K: E]=|H|$ and $[E: F]=|G: H|$.
- K / E is always Galois with Galois group $\operatorname{Gal}(K / E)=H$

Properties (continued)

- E is Galois over F if and only if H is a normal subgroup in G. If this is the case, then the Galois group is isomorphic to the quotien group $\operatorname{Gal}(E / F) \simeq G / H$.
- If E_{1} and E_{2} corresponding to H_{1} and H_{2} respectively, then:

$$
\begin{array}{ll}
\text { a } & E_{1} \cap E_{2} \text { corresponding to }<H_{1}, H_{2}>; \\
\text { b } & E_{1} E_{2} \text { corresponding to } H_{1} \cap H_{2} .
\end{array}
$$

Example

- Consider the field $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ is a subfield of the Galois extension $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- The other roots of the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} are the distinct conjugate of $\sqrt{2}+\sqrt{3}$, i.e. $\pm \sqrt{2} \pm \sqrt{3}$.
- The minimal polynomial is therefore:
$(x-(\sqrt{2}+\sqrt{3}))(x-(\sqrt{2}-\sqrt{3}))(x-(-\sqrt{2}+\sqrt{3}))(x-(-\sqrt{2}-\sqrt{3}))$,
that is the irreducible polynomial $x^{4}-10 x^{2}+1$.
- Moreover, $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$

